春运期间,北京南站候车大厅,旅客依次排队检票,秩序井然。(新华社记者陈旭 摄)
“得益于前期充足准备,北京南站运行总体平稳有序。”中国铁路北京局集团有限公司北京南站客运车间党支部书记董芳说,车站实时分析客流需求,对于重点热门方向及时掌握车票预售和候补情况,梯次投放运力。
在北京南站进站口,一位旅客找到车站工作人员:“还有15分钟开车,请帮帮我。”在工作人员引导下,这位旅客通过“急客”通道顺利上车。
站台上,润秋服务组工作人员韩畅正推着残疾人旅客上车。“为旅客服务,我们没有终点。”韩畅说,每个“春运人”都全身心投入工作,用更细致的工作,保障旅客旅途暖心、安心。
北京南站站台上,润秋服务组工作人员韩畅(图中右一)正在帮助重点旅客。(新华社记者陈旭 摄)据悉,今年春运期间,北京南站夜间不完全闭站,为需要候车休息的旅客划定休息区;联合北京佑安医院在候车厅开设医疗服务点,为有需要的乘客提供帮助;设置了去往北京各大火车站的乘车路线导航“小彩条”,为重点旅客提供便携式呼叫铃……
“暖心的服务让人安心。”从山东潍坊带孩子来北京看病的宋先生说,高铁线路越来越密,当天就能往返北京,希望兔年孩子康复,日子更好。
先“体检”再上线,高铁“医生”护列车安全
三年疫情,铁路客流骤降。不少车辆“趴”在车辆段没有上路,它们的维修保养工作做得如何?能否顺利通过春运“大考”?记者来到京津冀最大的动车组检修维修基地——中国铁路北京局集团有限公司北京动车段。
作为北京地区唯一的动车段,北京动车段配属动车组228列,负责京沪、京广、京张、京哈等线路动车组的检修调试和保养工作。
春运期间,北京动车段北京南动车运用所检修车间内,两辆和谐号正在检修。(新华社记者陈旭 摄)“别人过节放假,我们是越到节日越忙,天气越冷越忙。”北京动车段副段长魏巍带领记者来到检修车间,为保证动车组以最佳状态上线春运,段里早早就开始准备。
早上八点,技术员万奇鑫收拾好装备,开始进行检修。在高铁“医生”眼中,给列车“看病”是个“良心活”,每个环节缺一不可,要做到万无一失,必须怀着敬畏之心。
万奇鑫的小组今天要对列车进行空心轴探伤,空心轴对动车组安全运行影响巨大。以前检修时,靠老师傅用小锤敲打、听声判伤,现在使用超声波探伤器,更可靠更高效了。
技术员万奇鑫(左一)将40多斤重的探伤器放入空心轴。(新华社记者陈旭 摄)“春运开始后,全所12条检修车道不停地‘翻台’。”万奇鑫说,随着和谐号、复兴号、复兴号智能动车组等多种车型上线运行,检修工作的挑战也更大了。技术人员要不断学习、增强本领,确保车辆健康、春运安全。
健康过大年 重温冬奥情 京张高铁“冰雪之旅”很热门
随着春运开启,京张高铁迎来北京冬奥会结束后首个滑雪热潮。
在清河站,不少旅客正在等待乘坐京张高铁D6715次列车,前往崇礼体验冰雪乐趣。中国铁路北京局集团有限公司清河站站长王小勇说,预计春运期间单日旅客发送量在2万人次到2.5万人次之间,将达到开站以来的最高峰。
在北京冬奥会的带动下,越来越多的中国人了解、喜欢上了冰雪运动。
“崇礼站开站一年来,客流逐步增加,今年元旦假期,单趟运送雪板的数量就达到将近100件,赶上周六日,列车还要重联运行。”北京客运段京张高铁列车长王亚丽说,为方便携带雪板的旅客,清河站在候车大厅增设了雪具托运点,方便旅客办理托运。
25岁的庞先生在上海工作,周末专门坐飞机到北京,从大兴机场换乘地铁到清河站后,转京张高铁抵达崇礼。“全程衔接顺畅,交通非常高效,我们周末滑完,周一就可以回去上班。”庞先生说。
回升的客流里,是悄然回归的暖意。2023年春运,带回了人们久违的烟火气,也重启了活力与希望。新的一年,必将更加美好。(新华社 陈旭、丁静、李溢春)
诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?****** 相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。 你或身边人正在用的某些药物,很有可能就来自他们的贡献。 2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。 一、夏普莱斯:两次获得诺贝尔化学奖 2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。 今年,他第二次获奖的「点击化学」,同样与药物合成有关。 1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。 过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。 虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。 虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。 有机催化是一个复杂的过程,涉及到诸多的步骤。 任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。 不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。 为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。 点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。 点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。 夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。 大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。 大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。 大自然的一些催化过程,人类几乎是不可能完成的。 一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。 夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢? 大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。 在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。 其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。 诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]: 夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。 他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。 「点击化学」的工作,建立在严格的实验标准上: 反应必须是模块化,应用范围广泛 具有非常高的产量 仅生成无害的副产品 反应有很强的立体选择性 反应条件简单(理想情况下,应该对氧气和水不敏感) 原料和试剂易于获得 不使用溶剂或在良性溶剂中进行(最好是水),且容易移除 可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定 反应需高热力学驱动力(>84kJ/mol) 符合原子经济 夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。 他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。 二、梅尔达尔:筛选可用药物 夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。 他就是莫滕·梅尔达尔。 梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。 为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。 他日积月累地不断筛选,意图筛选出可用的药物。 在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。 三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。 2002年,梅尔达尔发表了相关论文。 夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。 三、贝尔托齐西:把点击化学运用在人体内 不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。 虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。 诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。 她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。 这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。 卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。 20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。 然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。 当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。 后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。 由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。 经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。 巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。 虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。 就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。 她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。 大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。 2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。 贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。 在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。 目前该药物正在晚期癌症病人身上进行临床试验。 不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。 「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江) 参考 https://www.nobelprize.org/prizes/chemistry/2001/press-release/ Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116. Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387. Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021. https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613. (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |